Selected Literature on Bayesian Statistics
 
  • Markov Chain Monte Carlo (MCMC):
    • Chen, M.-H, Ibrahim, J.G. and Shao, Q.-M. (2000). Monte Carlo Methods in Bayesian Computation, Springer, New York.
    • Gilks, W.R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice, Chapman & Hall, London.
    • WinBUGS: Spiegelhalter, D.J., Thomas, A. and Best, N. G. (1999). WinBUGS Version 1.3 User Manual MRC Biostatistics Unit, Cambridge.

  • Bayesian Nonparametrics:

  • Bayesian Variable Selection Methods:
    • Barbieri, and Berger, J. O. (2003). Optimal predictive model selection, ISDS Discussion paper 02-02, Duke University.
    • Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction and comparison (with discussion), Model Selection (ed. Lahiri), IMS Lecture Notes, 38, 135-207.
    • Brown, P. J., Vannucci, M. and Fearn, T. (1998). Multivariate Bayesian variable selection and prediction, Journal of the Royal Statistical Society B, 60, 627-641.
    • Casella, G. and Moreno, E. (2006). Objective Bayesian variable selection, Journal of the American Statistical Association, 101, 157-167.
    • Chipman, H. (1996). Bayesian variable selection and related predictors, Canadian Journal of Statistics, 24, 17-36.
    • Foster, D. P. and George, E. I. (1994). The risk inflation criterion for multiple regression, Annals of Statistics, 22, 1947-1975.
    • Gelfand, A. E. and Ghosh, S. K. (1998). Model choice: a minimum posterior predictive loss approach, Biometrika, 85, 1-11.
    • George, E. (2002). The variable selection problem, Statistics in the 21st Century (eds Raftery, Tanner and Wells), 350-358.
    • George, E. I. and Foster, D. P. (2000). Calibration and empirical Bayes variable selection, Biometrika, 87, 731-747.
    • George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling, Journal of the American Statistical Association, 88, 881-889.
    • George, E. I. and McCulloch, R. E. (1995). Stochastic search variable selection, Markov Chain Monte Carlo in Practice (eds Gilks, Richardson and Spiegelhalter), 203-214.
    • George, E/ I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection, Staistica Sinica, 7, 339-373.
    • Geweke, J. (1996). Variable selection and model comparison in regression, Bayesian Statistics (eds. Bernardo, Berger, Dawid and Smith), 5, 609-620.
    • Lindley, D. V. (1968). The choice of variables in multiple regression (with discussion), Journal of the Royal Statistical Society B, 30, 31-66.
    • Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression (with discussion), Journal of the American Statistical Association, 83, 1023-1036.
    • O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion), Journal of the Royal Statistical Society B}, 57, 99-138.
    • Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection, Journal of Econometrics, 75, 317-344.
    • Smith, A. F. M. and Spiegelhalter, D. J. (1980). Bayes factors and choice criteria for linear models, Journal of the Royal Statistical Society B, 42, 213-220.

 

           Back to BSWG Home

free hit counter
Site hits since August 17, 2005