ST 730 -- Fall 2005 Homework #4 -- Solutions 1) a) Usual form is (y(t) - mu) = rho*(y(t-1)-mu) + a(t) gets reworked to y(t) = mu*(1-rho) + rho*y(t) + a(t) so that rho = 0.6 and mu = 5 so that y(t) = 2 + 0.6y(t) + a(t) b) For an AR(1) process, Var( Y(t) ) = sigma-sq-a / (1-rho**2) Here Var( a(t) ) = sigma-sq-a = 9, (1 - 0.6**2)= 0.64 so Var( y(t) ) = 9/0.64 Forecast mean for AR(1) is mu + (rho**L)*(Y(N)-mu) and forecast variance is sigma-sq-a*(1 + rho**2 + ... + rho**(2L-2)) c) Here y(N) = 4, so y(N)-mu = -1, so for forecast mean forecast standard error y(N+1) 5 + 0.6*(-1) = 4.4 sqrt(9) = 3 y(N+2) 5 + .36*(-1) = 4.64 sqrt(9*(1 + .36) ) = 3.4986 y(N+1000) 5 + tiny*(-1) = 5 sqrt(Var(y(t))=sqrt(9/.64)=15/4 d) Here y(N) = 7, so y(N)-mu = 2, so forecast mean forecast standard error y(N+1) 5 + 0.6*(2) = 6.2 sqrt(9) = 3 y(N+2) 5 + .36*(2) = 5.72 sqrt(9*(1 + .36) ) = 3.4986 y(N+1000) 5 + tiny*(2) = 5 sqrt(Var(y(t))=sqrt(9/.64)=15/4 2) See code in hwk054bs.sas a) see proc plot /gplot b) using one-sample model assumptions, confidence interval for mean is ybar +/- t*se(mean), or .04563 +/- 1.97*0.0010264 or (.04361, .04765 ) se(mean) = sqrt( varest/N) ) = sqrt(.000225426/214)) = .0010264 c) mu-hat = 0.4526 se(mu-hat) = .0023184 (twice as big!) rho-hat = 0.68193 se(rho-hat) = .05028 *) Yes, AR(1) model looks adequate -- p-values on goodness-of-fit Ljung-Box statistic are large d) Using AR(1) model, CI for mu is mu-hat +/- z*se(mu-hat), or .04526 +/- 1.96*.0023184 or ( .04072, .04980 ) e) read forecasts from output